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Mean drift currents due to damped, progressive, capillary-gravity waves a t  an 
air/water interface are investigated theoretically. The analysis is based on a 
Lagrangian description of motion. Both media are assumed to be semi-infinite, 
viscous, homogeneous fluids. The system rotates about the vertical axis with a 
constant angular velocity if, where f is the Coriolis parameter. Owing to viscous 
effects, the wave field attenuates in time or space. Linear analysis verifies the 
temporal decay rate reported by Dore ( 1 9 7 8 ~ ) .  The nonlinear drift velocities are 
obtained by a series expansion of the solutions to second order in a parameter E ,  

which essentially is proportional to the wave steepness. The effect of the air on the 
drift current in the water is shown to depend on the values of the frequency w ,  
wavenumber k, density p, and kinematic viscosity v through one single dimensionless 

where subscripts 1 and 2 refer to the air and the water, respectively. Dynamically, 
the increased shear near the interface due to the presence of the air leads to a higher 
value of the virtual wave stress (Longuet-Higgins 1969). This yields a tendency 
towards a higher (Eulerian) mean drift velocity as compared to the free-surface case. 
For temporally damped waves, this stress, due to increased damping, effectively acts 
over a shorter period of time. Accordingly, the mean current associated with such 
waves tends to be larger for short times and smaller for large times than that 
obtained with a vacuum above the water. For spatially damped waves, the virtual 
wave stress becomes independent of time. The Coriolis force is then needed to balance 
the wave stress in order to avoid infinitely large drift velocities as t + co. 
Furthermore, assessment of realistic values for the turbulent eddy viscosities in the 
air and the ocean is shown to bring the results closer to those obtained for a 
vacuum/water system. 

1. Introduction 
Although several attempts had been made to extend the theory by Stokes (1847) 

on wave drift to include the effect of viscosity, real progress in the field had to await 
the work of Longuet-Higgins (1953). Longuet-Higgins demonstrated that second- 
order mean vorticity would be generated in the viscous boundary layer at the 
surface. This vorticity would diffuse inward, inducing a non-zero mean Eulerian 
current in the interior of the fluid. 

The induced mean vorticity can be associated with an equivalent 'virtual wave 
stress ' (Longuet-Higgins 1969). The magnitude of this stress, being proportional to  
the mean Eulerian velocity gradient, depends on the physical conditions at  the 
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surface. For an uncontaminated surface, Longuet-Higgins showed that the induced 
mean velocity gradient at the boundary of the inviscid region initially was equal to 
that obtained from inviscid theory. Hence, the total mean Lagrangian velocity 
gradient here was exactly twice that obtained from Stokes’ solution. Utilizing a 
Lagrangian approach ab initio, Weber ( 1 9 8 3 ~ )  demonstrated that the virtual wave 
stress of Longuet-Higgins could be evaluated exactly a t  the free surface. The notion 
‘free surface ’ is here used for an uncontaminated vacuum/water interface. This 
problem has also been studied by Grimshaw (1981), utilizing the generalized 
Lagrangian-mean formalism introduced by Andrews & McIntyre (1978). 

If the surface is contaminated, i.e. covered by a thin, insoluble film, the situation 
changes. For the particular case of a tangentially inextensible film, Craik (1982) 
demonstrated that the generation of vorticity was greatly enhanced, leading to much 
larger Eulerian drift velocities in the interior. For temporally attenuated waves also, 
however, the attenuation rate is very much increased. Consequently, the increased 
virtual wave stress acts over a shorter period of time. Weber & Frarland (1989) have 
shown that, for short capillary-gravity waves, the resulting drift current does not 
difl’er dramatically from that obtained when the surface is free. 

Dore (1978a, b )  took into account the fact that the air above the water was 
viscous, when calculating the drift current. He applied a boundary-layer technique, 
looking for similarity solutions. Neither temporal nor spatial attenuation were 
considered. Furthermore, the effect of rotation on the mean flow was neglected. In  
particular, we find that Dore’s drift solution increases without bounds as one moves 
away from the wave generating area. 

Analogous to the case of a surface film, the presence of the air increases the 
generation of second-order Eulerian vorticity near the ocean surface. The effect is 
much weaker, though, since the particle motion in the water is less constrained by 
contact with the air a t  the sea surface than by the presence of a tangentially 
inextensible film. Again, the increased effect of viscosity which leads to a larger 
vorticity generation, also causes the wave field (and the vorticity at the surface) to  
attenuate more rapidly in time. This will limit the growth of the Eulerian mean 
current. Spatially damped waves are also considered. Here the virtual wave stress 
becomes independent of time. Unless the Coriolis force is taken into account, the 
Eulerian mean current now will increase without limits as t + co . 

The development of the drift current is investigated in detail in the present paper. 
It seems reasonable, particularly for larger values of the wavelength, to  use turbulent 
eddy values for the kinematic viscosities in the air and in the ocean. The introduction 
of such values is very important as far as quantitative estimates of the drift velocity 
are concerned. 

2. Formulation of the problem 
The mathematical formulation follows closely that of Weber ( 1983a ; hereinafter 

referred to as (I)). We now consider monochromatic waves propagating along the 
uncontaminated interface of two semi-infinite, homogeneous, incompreasible fluids. 
The system is stably stratified with densities p1 and pz, where subscripts 1 and 2 refer 
to the upper and the lower layer, respectively. We intend to  model an air/water 
system, so throughout the analysis we assume that p1 4 pz. The whole system rotates 
about the vertical axis with constant angular velocity 3, where f is the Coriolis 
parameter. 
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The mathematical description of the fluid motion will be Lagrangian, and the 
dependent variables of the problem are expressed as functions of the Lagrangian 
coordinates (a ,  b,  c )  and time t. A Cartesian right-handed coordinate system is defined 
such that the (x, y)-axes are situated a t  the undisturbed interface. The z-axis is 
directed vertically upwards, and the position of the interface is governed by c = 0 for 
all times. The displacements (2, y, z) and pressure p are written as series expansions 
after an ordering parameter 6, which is essentially proportional to the wave slope 
(Pierson 1962). 

We look at waves propagating along the x-axis with frequency w and wavenumber 
k. For the capillary-gravity waves considered here, w B- f. Hence the effect of 
rotation can be neglected in the calculation of the primary wave field. I t  should be 
noted that this assumption leads to an incorrect solution for the mean Lagrangian 
mass transport if an Eulerian description of motion is used. For an inviscid fluid with 
a free surface this has been demonstrated by Hasselmann (1970). However, by using 
a Lagrangian formalism from the outset, Weber (1989) shows for a viscous ocean that 
the effect of the Earth's rotation on the wave field may be safely neglected when 
w B- f, as far as the mean mass transport is concerned. 

First, we assume that the wave field attenuates in time owing to the effect of 
friction. Following Lamb (1932) or (I), the solutions to O(B) may be written 

Here the upper sign corresponds to the upper layer (subscript l ) ,  and the lower sign 
to the lower layer (subscript 2). The superscripts on the left-hand side denote order of 
perturbation. Furthermore, 

where v is the kinematic viscosity coefficient. This is taken to be constant. To 
simulate turbulence, the value of v is allowed to exceed the molecular value, see $6. 
The wavenumber k is taken to be real. For the time dependence, we assume 

m:,2 = k2+n/v,,,, (2.4) 

n = -iw-p, (2.5) 
where the frequency w and the attenuation coefficient p both are real. If v1,2 are 
small, one obtains approximately 

m1,2 = ( l - i )  - = (l- i)yl ,2.  
[2;,,1: 

As mentioned before, we here study ocean surface waves. Hence p1 4 p2. Owing to 
the relatively small viscosities of air and water, the thickness S of the viscous 
boundary layer a t  each side of the interface is much smaller than the wavelength, i.e. 
in dimensionless form 

k 
Y1.2 

= - 4 1,  
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where yl,z is defined by (2.6). Furthermore, we define a dimensionless parameter 6 by 

This parameter appears when we equate the tangential stresses a t  the airlwater 
interface. Now (v,/v,); is of order unity for an airlwater system. Hence 

e 4  1. (2.9) 

The coefficients A, , ,  and B,,,  in (2.1)-(2.3) are determined from the linearized 
boundary conditions a t  the interface. Here continuity of velocities requires 

AzSl) = 0, c = 0, (2.10) 

Axil' = 0, c = 0, (2.11) 

where A denotes the difference between air and water values across the interface. For 
the stresses in the fluids, we obtain in the x- and x-directions, respectively: 

A&(xi:) +x1:))]  = 0, c = 0, (2.12) 

A[ -p(l) + 2 , ~ ~ i t ' ]  = - TzL~,',, c = 0. (2.13) 

Here p = pv is the dynamic coefficient of viscosity, and T the surface tension a t  the 
uncontaminated airlwater interface. Subscripts a, c and t denote partial dif- 
ferentiation with respect to space and time, respectively. 

Utilizing the relations (2.7) and (2.9), the coefficients Al, ,  and B,,,, obtained from 
(2.10)-(2.12), may be written as series expansions in the small parameters and 8. 
For a normalized solution we find, to leading order, 

I A ,  = - 1 - ( l + i ) 6 , +  ..., 
B, = (1 - i) 6, +S?-6,S,- (1 -i) 86, + . .., 

B, = 6;+(l-i)edZ+ ... . 
A ,  = 1+ ..., 

(2.14) 

Finally, by utilizing (2.13), the frequency and the attenuation rate are determined. 
Defining oo by 

(2.15) 

we obtain = oo(i -86,) (2.16) 

and p = w(e+a,)6, = 2k2vZ(i + Q ) .  (2.17) 

Here Q is defined by 

Q = ; = 2 [&. (2.18) 

This parameter yields the increase of the damping rate due to the viscous effect of 
the air above the water. For p1 = 0, i.e. a free surface, (2.17) reduces to the familiar 
expression for the attenuation coefficient first obtained by Basset (1888). For 
molecular values of the viscosities in the air and the water, the value of Q ranges from 
0.05 to 44 for wavelengths from 1 em to lo4 cm. However, at least for longer waves, 
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the ocean (and the atmosphere) definitely must be regarded as turbulent. This may 
lead to  a considerable decrease of Q, compared to the molecular value. The decrease is 
basically associated with a larger value of 8, in (2.18). We shall return to this problem 
in $6. 

The result (2 .17)  for the damping rate confirms the calculation by Dore (1978a, 
eqn. ( 3 . 1 3 ) ) .  Here we have included the effect of capillarity. The modification (2.16) 
of the inviscid frequency has not been reported before. 

We denote the initial wave amplitude by go. Insertion to lowest order in the 
vertical displacements a t  the interface then yields for the ordering parameter : 

€ = &/k (2 .19)  

as in (I). If the governing equations were non-dimensionalized, scaling the 
perturbation displacements and velocities by c,, and c0 o, respectively, the equivalent 
non-dimensional expansion parameter would be the wave steepness 5, k. This is 
assumed to  be a small quantity in our analysis, and we shall not pursue the 
calculations beyond O ( G  k 2 ) .  

3. Equations for the mean current 

the mean horizontal flow in each layer: 
The problem to O(e2) is analogous to that described in (I). We may then write for 

where V; = a2/aaa+a2/ac2. Here we have defined LF2) = p(2)/p+gx(2),  which con- 
stitutes the effective pressure per unit density. The equations for the mean vertical 
motion are not stated here : the reader is referred to Weber (1987). 

The overbars in these equations denote an average over one wave cycle. It is here 
implicitly assumed that the damping is weak, so that the amplitude reduction over 
one wave cycle is small. This means that P / w  4 1 for time damping, where P is given 
by (2.17). For spatial attenuation, considered in $7,  the equivalent expression is 
a/k + 1, where 01 is given by (7.1). 

It is natural to compare our calculated currents with Stokes’ result for an inviscid 
fluid (Stokes 1847). We therefore introduce Stokes’ surface velocity ( =  G w k )  as a 
measure of the strength of the currents. Accordingly, we define non-dimensional drift 
velocities (u, v )  in each layer by 

w 
(u, w) = - (p, jil”). 

k3 (3 .3 )  

We shall assume that there are no mean external pressure gradients to O(e2) in this 
problem, which seems to  be a reasonable assumption for a laterally unlimited 
air/water system. For temporal damping, then, = 0. Introducing complex drift 
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velocities by Wl, = ul, + iol,,, equations (3.1) and (3.2) yield for the upper and lower 
layer, respectively, 

v1 K ~ ~ -  K,-ifWl = 4k2v1e-28t[(i + (1 +&) (yl/y2)2)e--2kc 

v, W,,, - W,, - i f W, = 4k2v, eF2PB"[(2 + &) eZkc 

-2(yl/k)2e-~1Csinylc+3(yl/k)2e-2~~C], (3.4) 

- ( y 2 / k ) e ~ ~ c ( c o s y 2 c - s i n y , c )  +2&(y,/k)e~*Csiny2c], (3.5) 

where y1,2,  /3 and & are defined by (2.6), (2.17) and (2.18). 
At the interface, continuity of the mean horizontal velocities requires 

A W = O ,  c = O .  (3.6) 

For the mean viscous stresses a t  the interface, the boundary condition must be 
considered with some care. Denoting the mean horizontal stress to O(e2) in each fluid 
by 6,) and c), we obtain a t  the interface 

A%') = Tzl,  z l z ,  c = 0, (3.7) 

AT)=O, c = O ,  (3.8) 

where 
-~ +:' = p[,$c") + @ + @ .p' - (1) (1) m -7T-m -- T a  xc +%a 2, Ztc zu %a za l+P 2, 7 c = 0, m 

(3.9) 

q' = p&', c = 0. 
(3.10) 

We note that $:) and are very small in our problem (for temporal attenuation 
they vanish identically). Evaluation of (3.7) and (3.8) to sufficient accuracy in the 
small parameters C Y ~ , ~  and 8, yields 

A(pW,) = 0, c = 0. (3.11) 

If we neglect the effect of the air, (3.11) reduces to W,, = 0 a t  c = 0, as in (I); see also 
Longuet-Higgins (1953). At infinity, we require : 

w,+o, C - Z O O ,  (3.12) 

W,+O, c+--oo.  (3.13) 

4. Method of solution 

and (3.5). Using superscript (p) for these solutions, we find 
It is straightforward to obtain a pair of particular solutions to the equations (3.4) 

4 e-ylc cos y1 c + 3 e-2y1c] e-28t, (4.1) W l P )  = [JJ1 e-2kc - 

W2P) = [F, elkc - (2k/y,) eYnc(cos yz c + sin y2 c) - (4&k/y2) eYaC cos yz  c]  ePBt, (4.2) 

where 
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For a non-rotating ocean (f= 0) ,  we note that (4.1) and (4.2) yield the damped 
version of Stokes’ classic solution outside the viscous boundary layers at  the 
interface. This result conforms to that obtained in (I) for a free surface. 

If, by chance, (4.1) and (4.2) should happen to satisfy the boundary conditions 
(3.6) and (3.11), they would essentially represent the complete solutions to the drift 
problem. In a one-layer model this may occur if the wind stress a t  the ocean surface 
is specified in a particular way; see Weber (1983b), and also the discussion by Weber 
& Fsrland (1989). In  the present problem this is not possible, as seen by insertion 
from (4.1) and (4.2) into (3.6) and (3.11). Accordingly the complete solutions must be 
written 

(4.4) W - W(P) + 
1.2  - 1 , 2  1 , 2 ,  

where (4-5) 

From (3.6) and (3.11) we find that the solutions of the homogeneous problem must 
satisfy the following conditions at  the airlwater interface : 

A(Wh))  = -A(W@)) = (F2-Fl+l)e-2Pt, c = 0, (4.6) 

A(pLLh)) = -A(pWiP)) = -2kpu,(2+&-F2)e-28t, c = 0. (4.7) 

If, in a non-rotating system, we compare with the Eulerian formulation of 
Longuet-Higgins (1953), then our part W(P) of the solution, evaluated at  (cI B y;,12, 
corresponds to the inviscid Stokes drift, while W‘”) is an approximation to the mean 
Eulerian drift velocity. This statement has to be slightly modified when rotation is 
taken into account ; see the discussion in $5. A non-zero Eulerian mean current must 
develop, in Longuet-Higgins’ formulation, because the classic Stokes drift alone is 
unable to match the viscous solution at  the outer edge of the boundary layers. Hence 
the boundary layers, or the surface in a Lagrangian formulation, can be considered 
as a source of mean secondary vorticity. This will diffuse upwards and downwards 
and change the original distribution of mean momentum. We note from (4.6) and 
(4.7) that we have in the present problem two independent sources for the 
redistribution of mean momentum. We shall shortly return to assess their relative 
importance. 

When the wave motion starts it is reasonable to assume that, outside the viscous 
boundary layers, the classic Stokes solution for the wave drift will be established 
within a few wave cycles. It is more difficult to assess the initial distribution of mean 
momentum within the viscous boundary layers. Mathematically, however, con- 
tributions from the initial values in these regions only introduce rapidly damped, 
oscillatory terms. These terms disappear within a wave period, or so, and are 
therefore unimportant. Accordingly, we take the initial distribution of momentum in 
the boundary layers to be such as to minimize the number of vanishing transients in 
the solutions. This happens if we take 

Wl(t = 0) = e ~ 2 f c - 4 e ~ ~ ~ c ~ o s y 1 ~ + 3 e - 2 ~ ~ c ,  (4.8) 

W2(t = 0 )  = e2ke - (2k/y2) eyac(cos yZ c + sin yz c )  - (4k&/y2) eyzc cos y2 c. (4.9) 

From (4.1), (4.2) and (4.4), we then obtain the following initial conditions for the 
solutions of the homogeneous problem : 

Wt’,(t = 0) = (l-F 1.2  )erzkc,  (4.10) 

Solutions for the induced motion W\F’ are easily obtained by Laplace transforms. 
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The result is somewhat lengthy, and is therefore placed in the Appendix. However, 
we shall see that these solutions can be simplified. 

From now on we concentrate on the drift current in the water. In particular we 
focus on the contributions to the mean drift from the 'sources ' (4.7) and (4.6). From 
(A 1) (first integral) these may be written 

where (4.12) 

(4.13) 

We note that EII, which originates from (4.6), is identically zero at the air/water 
interface c = 0. However, it is easy to realize that E,, in practice is negligible 
compared to E,  a t  all depths. This is basically due to the different behaviour in time 
of the two integrals in (4.12) and (4.13). Except for very small times, the first integral 
will always dominate. To demonstrate this quantitatively, we have performed some 
numerical tests, using molecular kinematic viscosities v1 = 0.14 cmz s-l and vz = 
0.012 om2 s-l. We have chosen c = - l/yz, which is just below the surface boundary 
layer, i.e. before too strong spatial damping in the integrals occur. Varying the 
wavelength from 1 cm to lo4 cm, we found that E, would tend to dominate in (4.11) 
after 0.1 s for the shortest waves, increasing to about 2 s for the longest. Even for the 
shortest wave this is a small period of time as far as the development of the drift 
current is concerned (Weber & Farland 1989, figure 4). At larger depths, where the 
drift currents are smaller, a longer time will elapse before E,  tends to dominate. 
However, for all practical purposes, the wave-induced current may be evaluated 
under the assumption that lEIl 9 IEIII. 

If we now return to our original equations, it  follows straightaway that making the 
assumption lE,l $ IEIIl is equivalent to taking 

pzlwi:)I % pm;)l, c = 0 (4.14) 

in (4.7). This was also anticipated (without proof) by Dore [1978a, equation (4.5)'] for 
an air/water system. We have here justified the use of (4.14) in a much more rigorous 
manner. Applying (4.14) in the calculations or, formally, letting (E,I B lEIIl and 
O + O  in (A 1),  a complete solution for the non-dimensional wave-induced current in 
the water may be written 

Wz = [FZ ezkc - ( 2 k / y , )  eysc(cos y 2  c + sin y2 c) - (4&k/yz) eysc cos yz c] e-2bt 

(4.15) 

It is of considerable interest to compare the drift velocity found here with the result 
for a free surface, originally obtained by Longuet-Higgins (1953), and derived for a 
rotating ocean in (I). If we use the same initial conditions for the calculations in (I) 



Effect of the air on the drift velocity of water waves 627 

(cm) 4 4 Q Po P (5-l) 

1 0.26 7 x 10-2 0.05 0.95 1 .o 

lo2 1 x 10-2 3 x 10-3 1.7 0.95 x 10-4 2.6 x 1 0 - 4  

1 0 4  4 x 10-4 i x 10-4 44 0.95 x 4.3 x 10-7 

10 7 x 10-2 2 x 0.23 0.95 x 1.2 x 1 0 - 2  

103 2 x 10-3 6 x 7.6 0.95 x 8.2 x 

TABLE 1. Variation of parameters and attenuation rates with wavelength. 
See the text for details 

as we have used here for the lower layer, we find that the non-dimensional wave- 
induced current in the f?ee surface case may be written 

Wo = [Fo e2kc - (2E/y,)  ey2c(cos y, c + sin y2 c)] e-,Pot 

where 

(4.16) 

(4.17) 

We then note the very interesting fact that the solutions (4.15) and (4.16) are 
identical, apart from the parameter Q appearing in the former. This means that 
W, + W, when Q + 0. Accordingly, the entire effect of the air on the drift velocity of 
water waves is embedded in &, defined by (2.18). In  the next paragraph the difference 
between (4.15) and (4.16) will be explored in a quantitative sense. 

5. Discussion of solutions 
and p2 = 1 gcmP3. 

Furthermore, for the surface tension T a t  the uncontaminated air/water interface we 
assume T / p ,  = 74 cm3 s-'. Let us first consider laminar motion in the air and in the 
water. We may then take v1 = 0.14 ern' s-l and v, = 0.012 cm2 s-'. It is interesting to 
see how the values of the dimensionless parameters C Y ' , ~  and Q from (2.7) and (2.18) 
vary with the wavelength, together with the attenuation rates Po and /3 from (4.17) 
and (2.7). The results are summarized in table 1. Our analysis assumes that 6, and 
S, are small quantities. This is seen to be very well fulfilled. However, some care must 
be taken in the capillary wave regime. The parameter 6' defined by (2.8), which also 
is assumed to be small, attains here the value 4 x lo+. 

As noted by Dore (1978a, b) ,  the effect of the air is dominant in the damping 
coefficient for water waves when the wavelength. is larger than a metre, or so. This 
is also evident from table 1, as seen by the increasing difference between ,B, 
(vacuumlwater) and /3 (air/water). 

When the waves decay, their momentum is transferred to the mean current. For 
a fluid with a free surface, Longuet-Higgins (1969) pointed out that this transfer may 
be achieved through the action of a virtual wave stress, 7,, a t  the surface. This is also 

For the present problem we take p1 = 1.25 x 
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FIUTJRE 1 (a, b) .  For caption see facing page. 

the case for a rotating airlwater system, as will be demonstrated below. In order to 
compare more directly with Longuet-Higgins’ results, it proves convenient to make 
a slight rearrangement of the variables. Accordingly, the mean, non-dimensional 
velocity in the water, W, (= Wip) + Wih)), will now be written 

W 2 -  - WiE) + [e2eC - (2k/y2)  eY2c(cos y2 c + sin y2 c )  - (4&k/y2) eysc cos y2 c] e-,flt. 
(5.1) 

Below the vorticity layer, the mean current defined by (5.1) consists of WiE) plus the 
(damped) inviscid Stokes drift. Hence WiE) corresponds approximately to the 
Eulerian mean velocity ; although still expressed in Lagrangian coordinates (see also 
the discussion by Jenkins 1986). Utilizing (4.14), the boundary condition for WiE) is 
obtained from (4.7) : 

WiE) = 2k( 1 + &) e-*Pt, (5 .2)  

7, = p2 v2 t;20WkWLE), c = 0 (5.3) 

c = 0. 

A relevant virtual wave stress for the present problem may then be defined by 
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us 

0.5 - 

\ '., 
'\ 

\ 

I I I 
0 1 2 3 4 ' =.. I 

*. 
t (hr) 

FIGURE 1. Dimensionless surface velocity component u, = u(c = 0) from (4.16) (solid line) and 
(4.16) (broken line) versus time. Here v1 = 0.14 cmp 8-l and Y, = 0.012 cmr s-l, (a) h = 1 cm, ( b )  
A = 10 cm, (c) A = 10s cm, ( d )  A = lo* cm. (The dimeneional velocity scale here is c w k ;  see the text 
for meaning of symbols.) 

Utilizing this expression, it follows straightaway that 

m 

Since p1 Q pz in the present problem, the left-hand side of (5.4) is equal to the 
original, total wave momentum of the system. Accordingly, all the momentum is 
transferred to the mean current by the virtual wave stress, T ~ ,  defined by (5.3). This 
is a generalization of the result by Longuet-Higgins (1969) for waves at  a free surface 
in a non-rotating fluid. 

From the calculations of Weber & Fsrland (1989) for short capillary-gravity 
waves at a film-covered surface, it  is easy to see that the relation (5.4) holds &B well. 
This comes, of course, as no surprise. As pointed out by Longuet-Higgins (1969), this 
relation must be valid even for breaking waves. 
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Intuitively one might think that a more rapid wave decay should imply a stronger 
mean current. However, this argument certainly must be considered with some care. 
Weber & Fsrland (1989) demonstrated that for waves a t  a contaminated surface, the 
effect of larger damping led to an initially larger value of 7,. This yields a tendency 
towards a stronger growth of the drift current for short times. But as time progresses, 
rW itself is subject to stronger decay, which limits the growth of the induced current. 
At larger times the stronger decrease of 7, generally leads to a smaller drift current 
than would have occurred with less damping. Qualitatively the same story is true for 
an air/water system, but the effect is weaker. This is obvious from figure 1 where we 
have displayed the dimensionless surface velocity component us = u(c = 0 )  from 
(4.15) (solid line) and (4.16) (broken line) as functions of time for various values of 
the wavelength. We have used molecular values for the kinematic viscosities here. 
For h = 1 cm the two results are nearly indistinguishable, as seen from figure 1 (a). 
For larger wavelengths, the results displayed in figure 1 (b ,  c) clearly exhibit a 
tendency towards larger currents a t  short times and smaller currents a t  larger times 
when the air is present. This is also true for the results plotted in figure 1 ( d ) ,  even 
if it  does not show up within the timescale of the plot. However, although the ratio 
of the attenuation coefficients, PIPo, here may be quite large, the increase in current 
is seen to be moderate. For h = lo3 cm, we have PIPo = 8.6, while from figure 1 ( d )  
we note that the ratio of the current maxima is about 1.5. 

6. Effect of turbulence 
Under realistic conditions turbulence will always be present in the ocean and in the 

atmosphere. For wind-generated waves observations indicate that the mean current 
in the turbulent region immediately below the surface varies linearly with depth. 
Further below the surface, the velocity profile is logarithmic (Shemdin 1972 ; Wu 
1975; McLeish & Putland 1975). This is similar to flow over a flat plate. Assuming 
that the mean stress also is constant in the constant-shear region (and equal to the 
surface value 7J, an effective turbulent eddy viscosity viT) may be written (Bye 
1988) : 

Here K = 0.4 is von Karmdn's constant and u*, = (7s/p,)i is the friction velocity in 
the water. K is obtained from the wave spectrum, and Phillips (1985) estimates that 
K lies in the range 0.2 < K < 0.5. In Bye's formulation the roughness length z2 in the 
water is given by 

where u*. = (Ts.pl)g is the friction velocity in the air, and C, = 1/(2K). 
Assuming that the shear stress is also constant in the logarithmic region, one finds 

that the eddy viscosity varies linearly with depth. It should be noted, however, that 
the slopes of the logarithmic velocity profiles obtained by Cheung & Street (1988) 
deviate from the flat-plate value of u * , / K  for stronger wind speeds. This indicates 
that the waves may affect the turbulent mean flow directly. 

It appears that the turbulent mean flow in the air above the wavy surface is similar 
to that in the water (Bye 1988). Accordingly, the effective eddy viscosity in the 
constant-shear layer in the air may be written 

z2 = c 2 u h / g ,  (6.2) 

(6.3) y(T) = 
1 KU*121. 
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Here the roughness length z1 is given by the empirical relation 

3 = c,u:,/g, (6.4) 

where C, = 0.0185 (Wu 1982). 
In  the present problem the wind is not directly involved, and the turbulence is a 

reminiscence of earlier wind events. Furthermore, we neglect the vertical variation 
of the eddy viscosities. This will affect the drift solutions quantitatively (Madsen 
1977 ; Jenkins 1987). However, it will not alter the basic nature of the problem. To 
obtain representative order of magnitude estimates for the viscosities in the air and 
in the water, we consider values in the constant-shear layers a t  both sides of the 
air/water interface. A conservative estimate for light winds yields uiT) - 1 cm2 s-l in 
the surface layer. This is consistent with the measurements of Churchill & Csanady 
(1983). For the effective viscosity in the constant-shear layer at the air side of the 
interface, we obtain from (6.1)-(6.4) : 

viT) = (ClP2)  (p2/p1PviT). (6.5) 

We note that this relation is independent of the surface stress. Here we assume that 
(6.5) is valid in the absence of wind. Taking K = 0.35 (Bye 1988), i.e. C, = 1.4, we 
find that (C,/C,) (p2/pl); % 0.4 in (6.5). Hence it seems fair to assume that viT) and vim 
are of the same order of magnitude. 

We recall from the discussion of the laminar case in $5 that  the effect of the air 
became increasingly more important for the wave drift as the wavelengths grew 
longer. This is basically related to the growth of the parameter &, defined by (2.18). 
With realistic turbulent values for the viscosities in the air and the ocean, the effect 
of the air becomes much less pronounced. To illustrate this point, we consider waves 
with wavelengths lo3 cm and lo4 cm, respectively. Taking v1 = viT) = 1 cm2 s-l and 
v2 = viT) = 1 cm2 s-l, we find that Q = 0.22 and Q = 1.26 for these two respective 
wavelengths. From (2.17) and (4.17) it is then noted that the damping rates are 
increased by 22% and 126%, respectively, owing to the presence of the air. This 
increase is very much less than that obtained for waves in a laminar air/water 
system, as seen from table 1 .  

In figure 2 we have plotted us = u(c = 0) from (4.15) (solid line) and (4.16) (broken 
line) as functions of time for v1 = v2 = 1 om2 s-l. Figure 2 ( a )  depicts the development 
of this component when A = lo3 cm. We note that the former tendency persists, i.e. 
the effect of the air introduces larger currents a t  short times and smaller currents a t  
large times. But now the deviation from the results obtained with a free surface (i.e, 
p1 = 0) is almost negligible. Comparison with the case of molecular viscosities (figure 
1 ( d ) ,  solid line) further shows that the presence of turbulence in this case increases 
the damping and reduces the maximum current velocity. 

Figure 2 ( b )  portrays the same situation as in figure 2 (a), but now with A = lo4 cm. 
Here the free-surface solution (broken line) underestimates the current speed in the 
entire timescale of the plot (5  hr). However, the deviation from the air-influenced 
solution is quite small. 

Various observations seems to support an order of magnitude estimate of 1 cm2 s-l 
for the eddy viscosity in the water for light or vanishing winds. It may be more 
difficult to assess the appropriate value for the eddy viscosity in the air above the 
water. Based on the idea that the signature of the wind- and wave-generated 
turbulence will persist also when the wind has disappeared, the present estimates 
yield that the eddy viscosity in the air near the ocean surface should be of the same 
order of magnitude as in the water. Fortunately, however, the magnitude of the wave 
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FIGURE 2. Same as in figure 1, but for v1 = u, = 1 cm* s-l: (a) h = loa cm, ( b )  h = lo4 om. 
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FIGURE 3. Same as in figure 1 ,  but for va = 1 om2 5-l and h = los cm : * - * , v1 = 1 cme 8-l; 

-.-.-.- , v1 = 10 om* 8-l; --- , v1 = 50 cm* s-'; - , v1 = 100 om2 5-l. 
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FIGURE 4. Hodograph of the dimensionless drift current (4.15) for temporally damped waves at 
various depths. The numbered black dots denote evolution time in pendulum hours. Here v1 = 
v2 = 1 em* s-l and h = lo* cm. (a) c = 0, (b)  (i) c = - lo2 cm, (6) (ii) c = -8 x lo* cm. 

V 

drift current is not very sensitive to changes in vl. This is obvious from figure 3, where 
we have plotted us = u(c = 0 )  from (4.15) for h = lo8 cm for values of v1 increasing 
by a factor of 100, from 1 cm2 s-l to 100 cm2 s-l. In these computations the value of 
v2 has been kept fixed (=  1 cm2 s-l). 

For larger times, the effect of the Earth’s rotation will affect the solutions. This is 
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obvious from figure 4 where we have displayed hodographs of the dimensionless wave 
drift current (4.15) at various depths. I n  these computations we have taken 
v1 = vz = 1 cm2 s-l and h = lo4 cm. The numbered black dots on the graphs denote 
evolution time in pendulum hours. For the Coriolis parameter we have chosen f = 
1.2 x low4 s-l. The graphs clearly show that the wave drift current contains a 
pronounced element of inertial oscillations. This is obvious from the observed period 
of 12 pendulum hours in the plots. Similar results are presented in (I) for a free 
surface; see also Jenkins (1986) and Weber (1989). If we entirely neglect the effect of 
viscosity in the air and the water, i.e. v, = v2 = 0, the mean drift currents will be 
purely inertial, as demonstrated by Hasselmann (1970) and Pollard (1970). The 
hodographs will then be closed circles centred a t  the origin. Figure 4(a) displays the 
surface current for the present case. We note that the inclusion of viscosity induces 
a net current, when averaged over the inertial period. At the surface this slowly 
damped net current is directed to  the right of the wave propagation direction (the x- 
axis). The deflection angle is about 45'. At larger depths the net current is veering 
to the right (on the Northern Hemisphere). An appropriate Ekman depth D ,  = 
7c(2v2/f)i may be defined in the water. For this example D ,  = 4 x lo2 cm. Figure 
4 ( b )  (i) depicts the drift current a t  c = - lo2 cm, i.e. within the upper part of the 
Ekman layer. We now note that the net current, averaged over one inertial period, 
is deflected about 90' to the right of the wave propagation direction. Below the 
Ekman layer, the net current practically vanishes. The motion here is purely inertial. 
This is obvious from figure 4 ( b )  (ii), which displays the hodograph a t  c = - 8 x lo2 cm. 
We note a slight increase in the magnitude of the drift current. This increase occurs 
essentially after 6-12 pendulum hours, and is due to downward diffusion of wave 
momentum from the surface. Finally, for sufficiently large times, the current spirals 
in figure 4 will all end up in the origin. 

For increasing values of the eddy viscosities, the magnitude of the drift currents 
become larger for the early hours of the motion, and the subsequent damping of the 
inertial oscillations become more efficient ; see also Weber (1989). 

7. Spatial attenuation 
For most laboratory tests, the waves are produced by a wave generator operating 

at  a given frequency. Owing to the effect of viscosity, the wavenumber now becomes 
complex, i.e. the wave amplitude decays exponentially in space. The spatial and 
temporal attenuation coefficients a and p are related through 

a = p/cg = 2k2vz( 1 + &)/cg, (7 .1)  

where cg is the group velocity of the waves (Gaster 1962). Here cg = w/(2k), while 
is obtained from (2.17). Also ocean swell, emanating from a local storm area, may 
conveniently be described by spatial attenuation. The drift currents due to such 
waves may readily be obtained from the present calculations. Consider mono- 
chromatic, spatially attenuated waves. The particular solution to the non-rotating 
mean drift equations in Lagrangian form must also now yield the modified Stokes 
drift. The modification is due to viscosity, and occurs in the thin boundary layers 
near the air/water interface. This modified Stokes drift is the same as that obtained 
for temporally damped waves, except that  the damping factor exp ( - 2bt) is replaced 
by exp (-2aa). We have here assumed that a €  [0, 00).  The arguments above is easily 
seen to  be valid for the free-surface case (Jenkins 1986). Comparing with the results 
of Weber (1987) and Weber & Furland (1989), this is also seen to apply when the 



Effect of the air on the drift velocity of water waves 635 

surface is covered by a thin ice sheet, or a tangentially inextensible oil film. 
Accordingly, for an air/water system, the spatially damped analogue to the mean 
drift equations (3.4) and (3.5) may be written 

L,( W,) = 4k2v1 e-2au[e-2kc- 2(yl/k)l e-YiC sin y1 c +  3(y1/k)l e-2Y1c], (7.2) 

(7.3) 
L2(W2) = 4k2~ze~2uu[e2kc-(y,/k)e~~C(cosy2c-siny2c)+2~(yz/k)e~~csiny2c]. 

Here Ll,z is the differential operator defined by the right-hand sides of (3.4) and (3.5). 
We have utilized the fact that laz/3czl 9 l3*/8a2( in this case. 

It should be noted that the mean horizontal pressure gradient, @) in (3.1), is not 
zero in this case. Formally, it can be obtained from the equation for the mean vertical 
motion; see Weber (1987) for a similar problem. 

Utilizing the boundary conditions (3.1 1)-(3.13) and the initial conditions (4.8) and 
(4.9) for spatially damped waves, the wave drift solutions in the air and the water 
may be derived in the same manner as before. Again we simplify the problem by 
utilizing the approximation (4.14). The non-dimensional wave-induced mean current 
in the water may then be written 

Here 

(7.4) 

(7.5) 

Again, this solution reduces to that obtained for a free surface when Q + 0. 
When a wave generator is operated continuously, energy and momentum are 

supplied to the region a €  [0, co) at a constant rate. Accordingly, the virtual wave 
stress at  a specific point becomes independent of time. In a non-rotating system this 
will lead to drift currents that increase in time. This is easily seen from the solution 
(7.4). For f = 0, we find that us = u(c = 0) + 00 as t +  00. When rotation is taken into 
account, the wave stress will tend to get balanced by the Coriolis force. Hence a 
steady state is achieved as t + co. 

The wave drift current is also now in general directed to the right of the wave 
propagation direction (when f > 0). At the surface, the deflection angle depends on 
the dimensionless parameters Q and R, where the latter is defined by 

This expresses the ratio between a Stokes depth 1/(2k) and an Ekman depth 
(2v,/f)i. In terms of R, we obtain two limiting forms of the steady surface current 
from (7.4) : 

w, = - '+Q(l-i)e-zaa, 2R R 4 1, (7.7) 

and 

21 

(7.8) 
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FIGURH 6. Hodograph of the dimensionless surface drift current (7.4) for spatially damped waves. 
Here a = 0, v1 = v2 = 1 ema SP and h = lo4 em. Numbered black dots are the same as in figure 4. 
(a) Effect of air included; ( b )  free surface (p, = 0). 
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For both these limits we note that the steady surface current is directed 45" to the 
right of the wave propagation direction, irrespective of the value of Q .  Using our 
previous values for the turbulent eddy viscosities (vl = v2 = 1 om2 s-l), and taking 
f = 1.2 x s-l, we find that R = 6.2 for waves of wavelength lo4 em. The result for 
the surface current then becomes close to that given by (7.8). In the present example 
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Q = 1.25. Accordingly, the viscous effect of the air increases the current speed at  
a = 0 by about 60%. One should note, however, that the magnitude of the steady 
current is only slightly more than $ of the initial Stokes drift in this case. This is also 
obvious from figure 5 ,  where we have plotted hodographs of the surface current from 
(7.4). We have taken a = 0, and the parameters are those stated above. In figure 5(a)  
the viscous effect of the air is included, while figure 5 ( b )  depicts the free-surface case 
(pl = 0). The crosses on the plots denote the steady limit as i?+ co. 

For the current speed away from the wave generation area (a > 0) ,  it is important 
to include the increased spatial damping due to the presence of air. With Q = 1.25, 
we note from (7.1) that the damping coefficient in the present example is more than 
twice that of a free surface. This relatively stronger spatial damping means that we, 
beyond a certain distance d from the wave generator, find that the air-influenced 
drift current becomes smaller than its free-surface counterpart. For R % 1, we obtain 
from (7.8) In (1 + tQ) 

4k2v2 Q / c ,  ‘ 
d =  (7.9) 

For the present example we find d - 1.5 x lo3 km. This may be a relevant distance 
from the coast to a potential generation area for ocean swell. 

It is worth remembering that, since the mean drift velocities u1 and u2 here have 
a weak horizontal dependence, continuity requires small vertical mean velocities in 
both fluids. Denoting these by w1 and w,, respectively, the nonlinear continuity 
equation in Lagrangian form yields, to O(e2), 

wl, , = 2a ul, dc. 1 (7.10) 

We have here assumed that w1 = wz = 0 at c = 0. Owing to the small value of the 
attenuation coefficient a, the mean vertical motion discussed here will in practice be 
negligible. 

8. Summary and discussion 
Since the density of air is very much less than that of water, the dispersion relation 

for waves at an airlwater interface deviates very little from that obtained by 
replacing the air by vacuum. However, as pointed out by Dore (1978a), the viscous 
damping of the waves tends to be dominated by the presence of the air, when the 
wavelength is more than 1 m, or so. Consequently, the nonlinear transfer of 
momentum from the waves to the mean current will be dominated by the air for 
longer waves. According to Dore (1978a, b ) ,  the drift current should then become 
substantially larger than that obtained from earlier theories (e.g. Longuet-Higgins 
1953). 

Although Dore’s results now have been known for more than 10 years, their 
implications have not, to the authors ’ knowledge, been incorporated in common 
prognostic models for wind- and wave-induced ocean currents. This may have several 
reasons. First, it is fair to say that it is not easy, neither from laboratory experiments 
nor from field measurements, to find evidence for substantially larger wave drift 
currents than those predicted by earlier theories. Secondly, Dore’s theory has several 
weaknesses. In  particular, the effects of temporal or spatial damping are not taken 
into account, and the validity of the solutions are limited to a certain area 
downstream of the generating region. Furthermore, the effect of the Earth’s rotation 

21-2 
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is neglected, and no attempt has been made to quantify the effect of turbulence on 
the mean drift solutions. 

Some of these deficiencies are related to the mathematical approach adopted by 
Dore, i.e. the formulation of a double boundary-layer model where one looks for 
similarity solutions. We have here chosen a very different theoretical approach to the 
wave drift problem. In particular we use a Lagrangian description of motion. This 
has great advantages in problems including oscillating material surfaces, like the 
air/water interface in this case. The analysis becomes fairly straightforward, with no 
need for assumptions that limit the solutions in any severe way, as long as the wave 
steepness stays small. 

Our results show that the effect of the air on the mean wave-induced drift current 
can be incorporated into one single parameter Q, defined by (2.18). We find that the 
inclusion of the air does not change the drift currents substantially for temporally 
damped waves. There is, however, a tendency for higher velocities a t  short times and 
smaller velocities a t  large times, Particularly for longer waves, it  is important to 
apply realistic values for the eddy viscosities in the air and the ocean. This is shown 
to diminish the effect of the air upon the drift current in the water. 

The effect of air becomes most pronounced for spatially damped waves. A 
continuous generation of wave energy now yields a time-independent virtual wave 
stress at  any specific point behind the wave generator. Unless the Earth’s rotation 
is taken into account, the surface current will continue to grow as t + CQ. In practice, 
however, and particularly in connection with laboratory experiments, the wave 
generator will operate only for a limited period of time. This will limit the growth of 
the current. Unfortunately, we have not been able to find any suitable experimental 
data relevant to the present problem (deep water, no endwalls, uncontaminated 
surface). Hence, no comparisons between theory and observations could be made. 

For this particular study of capillary-gravity waves along an airlwater interface, 
we have considered monochromatic waves. A generalization to a random wave field 
is straightforward (Chang 1969 ; Jenkins 1986). However, such an approach is usually 
of greatest interest when a wind is blowing, and we have a fully developed sea state. 
This generalization will therefore be left for future research which includes the 
combined action of wind and waves. 

This research was in part supported by Statoil under contract no. T 7333. Arne 
Melsom is gratefully acknowledged for his assistance concerning the numerical 
evaluation and the plotting of the presented results. 

Appendix. Induced mean motion 
The induced mean motion Wi:’, in the air and the water is obtained by Laplace- 

transforming the governing equation (4.5) and the boundary conditions (4.6) and 
(4.7). The initial values are given by (4.10). Utilizing the shifting and convolution 
properties of Laplace transforms, combined with integration along a modified 
Bromwich contour in the complex plane, we finally obtain 

f t  
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Here 

where K ,  = 1 (air, c 2 0);  K ,  = 0 (water, c < 0). (A 3) 
F, and F, are given by (4.3). For a fuller account of the mathematical details 
connected with these calculations, reference is made to Fsrland (1989). 
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